Data Communications & Computer Networks

Chapter 9

Circuit and Packet Switching

Agenda

- Preface
- Circuit Switching
- Softswitching
- Packet Switching
- Home Exercises

Fall 2008
Key points – Circuit switching

- Circuit switching is used in public telephone networks and is the basis for private networks built on leased-lines.
- Circuit switching was developed to handle voice traffic but also digital data (although inefficient)
- With circuit switching a dedicated path is established between two stations for communication
- Switching and transmission resources within the network are reserved for the exclusive use of the circuit for the duration of the connection
- The connection is transparent: once it is established, it appears to attached devices as if there were a direct connection

Key points – Packet switching

- Packet switching was designed to provide a more efficient facility than circuit-switching for bursty data traffic
- With packet switching, a station transmits data in small blocks, called packets
- Each packet contains some portion of the user data plus control info needed for proper functioning of the network
- A key element of packet-switching networks is whether the internal operation is datagram or virtual circuit (VC).
 - With internal VCs, a route is defined between two endpoints and all packets for that VC follow the same route
 - With internal diagrams, each packet is treated independently, and packets intended for the same destination may follow different routes
- Examples of packet switching networks are X.25, Frame Relay, ATM and IP.
Preface

• Previous lectures described how info can be encoded and transmitted over a communication link
• Now, we turn to broader discussion of networks, which can be used to interconnect many devices and in particular with traditional approaches to wide area network design: circuit and packet switching
• Since the invention of the telephone, circuit switching has been the dominant technology for voice communications
• Packet switching has been researched since 1970s and it is one of the few effective technologies for long-distance data communications
• Packet-switching networks consist of a distributed collection of packet-switching nodes
 — Causes time delay
 — Overhead involved (status info)
• As a result packet-switching networks can never perform “perfectly” and many algorithms are used to cope with the time delay and overhead penalties of network operation
Switching Networks

- Long distance transmission is typically done over a network of switched nodes
- Nodes not concerned with content of data
 - Their purpose is to provide a switching facility that will move data from node to node until they reach their destination
- End devices are stations
 - Computers, terminals, phones, etc.
- A collection of nodes and connections is a communications network
- Data routed by being switched from node to node

Nodes

- Nodes may connect to other nodes only, or to stations and other nodes
- Node to node links are usually multiplexed (using TDM or FDM)
- Network is usually partially connected
 - Some redundant connections are desirable for reliability
- Two different switching technologies
 - Circuit switching
 - Packet switching
Simple Switched Network

- Nodes connected to one another by transmission links
- Each station attaches to a node
- The collection of nodes is a switched communication network

Circuit Switching
Circuit Switching

- Dedicated communication path between two stations
- Path is a connected sequence of links between network nodes
- On each physical link, a logical channel is dedicated to the connection
- Communication via circuit switching involves three phases:
 - Circuit Establishment
 - Data Transfer
 - Circuit Disconnect
- Connection path must be established before data transmission begins
- Nodes must have switching capacity and channel capacity to establish connection
- Switches must have intelligence to work out routing

Circuit Switching - Applications

- Circuit switching is inefficient
 - Channel capacity dedicated for duration of connection
 - If no data, capacity wasted
- Set up (connection) takes time
- Once connected, transfer is transparent to the users
 - Info is transmitted at a fixed data rate with no delay (except for the propagation delay)
- Developed for voice traffic (phone)
 - may also be used for data traffic via modem
- Private Branch Exchange (PBX) interconnection
 - Interconnection of telephones within a building or office
Public Switched Telephone Network (PSTN)

Telecoms Components

- **Subscriber**
 - Devices attached to network

- **Subscriber line**
 - Link between subscriber and the network
 - Also called Local Loop or Subscriber loop
 - Few km up to few tens of km

- **Exchange**
 - Switching centers in the network
 - End office or Local Exchange (class 5) supports subscribers

- **Trunks**
 - Branches between exchanges
 - Multiplexed
Circuit Establishment

Circuit Switch Elements
Circuit Switching Concepts

- **Digital Switch**
 - Provides transparent signal path between devices
- **Network Interface**
 - Represents functions and hardware needed to connect digital devices (e.g., data processing devices, digital telephones) to the network
- **Control Unit**
 - Establishes connections
 - Generally on demand
 - Handles and acknowledges requests
 - Determines if destination is free
 - Constructs the path
 - Maintains connection
 - Disconnects

Blocking or Non-blocking

- An important characteristic of a circuit-switching device is whether it is blocking or nonblocking
- **Blocking occurs when**
 - the network is unable to connect stations because all paths are in use
 - A blocking network allows this
 - Used on voice systems
 - Short duration calls
- **Non-blocking network**
 - Permits all stations to connect (in pairs) at once
 - Used for some data connections
Space Division Switching

- Developed for analog environment
- Signal paths are physically separated from one another (divided in space)
- Basic building block of the switch is a metallic cross-point that can be enabled and disabled by a control unit
- Crossbar switch
 - Limitations
 - Number of crosspoints grows as square of number of stations (costly for a large switch)
 - Loss of crosspoint prevents connection
 - Inefficient use of crosspoints
 - All stations connected, only a few crosspoints are in use
 - Single-stage crossbar matrix is non-blocking i.e. a path is always available to connect an input to an output
 - To overcome these limitations, multiple-stage switches are used

Space Division Switch
Multistage Switch

- Reduced number of crosspoints
 - This increases crossbar utilization
- More than one path through network
 - Increases reliability
- More complex control
- May be blocking

Time Division Switching

- Modern digital systems rely on intelligent control of space and time division elements
- Use digital time division techniques to set up and maintain virtual circuits
- Partition low speed bit stream into pieces that share higher speed stream
Control Signaling Functions

- In a circuit-switched network, control signals are the means by which the network is managed and by which calls are established, maintained and terminated
- Functions of control signaling are:
 - Audible communication with subscriber (dial tone, ringing tone)
 - Transmission of dialed number
 - Call cannot be completed indication
 - Call ended indication
 - Signal to ring phone
 - Billing info
 - Equipment and trunk status info
 - Diagnostic info
 - Control of specialist equipment

Control Signal Sequence

- Consider a typical phone connection sequence from one line to another in the same central office
 - Prior to the call, both phones not in use (on hook)
 - Subscriber lifts receiver (off hook)
 - End office switch signaled
 - Switch responds with dial tone
 - Caller dials number
 - If target not busy, sends ringer signal to target subscriber
 - Feedback to caller
 - Ringing tone, engaged tone, unobtainable
 - Target accepts call by lifting receiver
 - Switch terminates ringing signal and ringing tone
 - Switch establishes connection
 - Connection release when source subscriber hangs up
Switch to Switch Signaling

• When the called subscriber is attached to a different switch than the calling subscriber, the following switch-to-switch trunk signaling functions are required:
 — Originating switch seizes an idle interswitch trunk
 — Sends off hook signal on trunk, requesting digit register at target switch (for address)
 — Terminating switch sends off hook followed by on hook to show register ready
 — Originating switch sends address

Location of Signaling

• Signaling between subscriber to network
 — Depends on subscriber device and switch
• Signaling within the network
 — Management of subscriber calls and network
 — More complex
In Channel Signaling

- Use same channel for signaling and call
 - Requires no additional transmission facilities
- Inband signaling
 - Uses same frequencies as voice signal
 - Can go anywhere a voice signal can
 - Impossible to set up a call on a faulty speech path
- Out of band signaling
 - Voice signals do not use full 4kHz bandwidth
 - Narrow signal band within 4kHz used for control
 - Can be sent whether or not voice signals are present
 - Need extra electronics
 - Slower signal rate (narrow bandwidth)

Drawbacks of In Channel Signaling

- Limited transfer rate
- Delay between entering address (dialing) and connection
- Overcome by use of common channel signaling
Common Channel Signaling

• Control signals carried over paths independent of voice channel
• One control signal channel can carry signals for a number of subscriber channels
• Common control channel for these subscriber lines
• Associated Mode
 — Common channel closely tracks interswitch trunks
• Disassociated Mode
 — Additional nodes (signal transfer points)
 — Effectively two separate networks
Signaling System Number 7 (SS7)

- Common channel signaling scheme
- Specifically designed to be used in ISDNs
- Purpose of SS7 is to provide a standardized common channel signaling system with the following characteristics:
 - Optimized for 64k digital channel network
 - Call control, remote control, management and maintenance
 - Reliable means of transfer of info in sequence
 - Will operate over analog and below 64k
 - Point to point terrestrial and satellite links

SS7 Signaling Network Elements

- Signaling point (SP)
 - Any point in the network capable of handling SS7 control message
- Signal transfer point (STP)
 - A signaling point capable of routing control messages
- Control plane
 - Responsible for establishing and managing connections
- Information plane
 - Once a connection is set up, info is transferred in the information plane
Transfer Points

• The following parameters influence the decision concerning the design of the network and the number of levels to be implemented:

 • STP capacities
 — Number of signaling links that can be handled
 — Message transfer time
 — Throughput capacity

 • Network performance
 — Number of SPs
 — Signaling delays

 • Availability and reliability
 — Ability of network to provide services in the face of STP failures

Signaling Network Structures

STP = Signaling transfer point
SP = Signaling point
TC = Transit center
LE = Local Exchange
Softswitching

Softswitch Architecture

- General purpose computer running software to make it a smart phone switch
- Lower costs
- Greater functionality
 - Packetizing of digitized voice data
 - Allowing Voice over IP (VoIP)
- Most complex part of telephone network switch is software controlling call process
 - Call routing
 - Call processing logic
 - Typically running on proprietary processor
- Separate call processing from hardware function of switch
- Physical switching done by Media Gateway (MG)
- Call processing done by Media Gateway Controller (MGC)
Traditional Circuit Switching

Softswitch
Packet Switching

Packet Switching Principles

- Circuit switching designed for voice
 - Key characteristic is that resources within the network are dedicated to a particular call
 - Much of the time a data connection is idle
 - inefficient
 - Data rate is fixed
 - Both ends must operate at the same rate, this limiting the utility of the network in interconnecting a variety of computers

- Packet switching networks address above problems
Basic Operation of packet switching networks

- Data transmitted in small packets
 - Typically 1000 octets (bytes)
 - Longer messages split into series of packets
 - Each packet contains a portion of user data plus some control info
- Control info
 - Includes routing (addressing) info
- At each node packets are received, stored briefly (buffered) and past on to the next node
 - Store and forward

Use of Packets

![Diagram of packet-switching network]
Advantages of packet-switched over circuit-switched networks

- Line efficiency is greater, because
 - Single node to node link can be shared by many packets over time
 - Packets queued and transmitted as fast as possible
- Data rate conversion can be performed
 - Each station connects to the local node at its own speed
 - Nodes buffer data if required to equalize rates
- Packets are accepted even when network is busy
 - Delivery may slow down
- Priorities can be used
 - Transmit higher-priority packets first, so as to experience less delay

Switching Technique

- Station breaks long message into packets
- Packets sent one at a time to the network
- Packets handled in two ways
 - Datagram
 - Virtual circuit
Datagram

- Each packet treated independently
- Packets can take any practical route
- Packets may arrive out of order
- Packets may go missing
- Up to receiver to re-order packets and recover from missing packets

Datagram Diagram

- Each node chooses the next node on a packet’s path taking into account info received from neighboring nodes on traffic, line failures, etc
- Packets with same destination address do not follow the same route (c) and may arrive out of order at the exit node
- Exit node restores packets to their original order before delivering them to the destination
Virtual Circuit

- Preplanned route established before any packets sent
- Once route is established, all the packets between the two communicating parties follow the same route through the network
- Call request and call accept packets establish connection (handshake)
- Each packet contains a Virtual Circuit Identifier (VCI) instead of destination address
- No routing decisions required for each packet
- Clear request to drop circuit
- Not a dedicated path

Virtual Circuit Diagram

- A preplanned route is established before any packets are sent
- Once route is established, all the packets follow the same route
Virtual Circuits vs Datagrams

- **Virtual circuits**
 - Network can provide sequencing and error control
 - Packets are forwarded more quickly
 - No routing decisions to make
 - Less reliable
 - Loss of a node looses all circuits through that node

- **Datagrams**
 - No call setup phase
 - Better if few packets
 - More flexible
 - Routing can be used to avoid congested parts of the network

Circuit vs Packet Switching

- **Performance**
 - Propagation delay
 - Time taken for a signal to propagate from one node to the next (generally negligible)
 - Transmission time
 - Time taken for a transmitter to send out a block of data
 - Eg it takes 1 sec to transmit a 10,000 block of data onto a 10kbps line
 - Node delay
 - Time taken for a node to perform necessary processing as it switches data
Event Timing

(a) Circuit switching (b) Virtual circuit packet switching (c) Datagram packet switching

Nodes: 1 2 3 4

Call request signal propagation delay processing delay Call request packet

Call accept signal

User data

Acknowledgement signal

Required Reading

- Stallings Chapter 10
- ITU-T web site
- Telephone company web sites
Home Exercises

Review questions

- Why is it useful to have more than one possible path through a network for each pair of stations?
- What are the four generic architectural components of a PSTN? Define each term.
- What is the principle application that has driven the design of circuit-switched networks?
- What is the difference between in-channel and common channel signaling?
- What are the drawbacks of in-channel signaling?
- What are the advantages of packet switching compared to circuit switching?
- What is the principle difference in the architecture of a softswitch compared to that of a traditional circuit switch?
- Explain the difference between datagram and virtual circuit operation.